



2018 Technical Review Hrishikesh (Rishi) Pathak and Mark Tuttle Department of Mechanical Engineering University of Washington

#### Motivation and Key Issues:

In-service bond failures between composite facesheets and honeycomb cores have been reported (photos courtesy of Ronald Krueger, National Institute of Aerospace)

Boeing 747 upper skin disbonds



approx. 24" x 60" upper skin disbond





Airbus A-310 Rudder Failure





Motivation and Key Issues:

•Core-to-skin disbond initiation and growth are thought to occur due to combination of factors:

•Water ingression into core volume, followed by freeze-thaw cycles....water ingression may occur due to:

•Wicking of liquidous water through facesheet microcracks, along fiber/matrix interfaces, and/or through improper design of edge closeouts

•Diffusion of water *molecules* through (otherwise undamaged) facesheets, resulting in increased core humidity levels

• Pressure differences between inside and outside of unvented honeycomb cores (Ground-Air-Ground or 'GAG' pressure cycles)







Pressure differences between inside and outside of unvented honeycomb structures (Ground-Air-Ground or 'GAG' pressure cycles)

<u>Configuration at ground level</u> P<sub>o</sub> = 100 kPa = 14.7 psi Configuration at 35.000 ft  $P_0 = 24 \text{ kPa} = 3.5 \text{ psi}$ 



#### Motivation and Key Issues:

•Core-to-skin disbond initiation and growth are thought to occur due to combination of factors:

•Water ingression into core volume, followed by freeze-thaw cycles....water ingression may occur due to:

•Wicking of liquidous water through facesheet microcracks, along fiber/matrix interfaces, and/or through improper design of edge closeouts

•Diffusion of water *molecules* through (otherwise undamaged) facesheets, resulting in increased core humidity levels

• Pressure differences between inside and outside of unvented honeycomb cores (Ground-Air-Ground or 'GAG' pressure cycles)







#### **Objective of Study:**

To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.







#### **Objective of Study:**

To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

#### Technical Approach:

- The critical strain energy release rate associated with sandwich facesheet/core debonding (*Gc*) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.







#### Objective of Study:

To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

#### Technical Approach:

- The critical strain energy release rate associated with sandwich facesheet/core debonding (*Gc*) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.
- Gc was measured using the Single Cantilever Beam (SCB) geometry







#### Objective of Study:

To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

#### Technical Approach:

- The critical strain energy release rate associated with sandwich facesheet/core debonding (*Gc*) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.
- Gc was measured using the Single Cantilever Beam (SCB) geometry
- SCB specimens with 3-, 4-, and 8-ply woven fabric facesheets and four different honeycomb cores types were tested







#### **Objective of Study:**

To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

#### Technical Approach:

- The critical strain energy release rate associated with sandwich facesheet/core debonding (G<sub>c</sub>) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.
- Gc was measured using the Single Cantilever Beam (SCB) geometry
- SCB specimens with 3-, 4-, and 8-ply woven fabric facesheets and four different honeycomb cores types were tested
- Environmental conditioning consisted of:
  - Constant exposure to 65°C and 90%RH until humidity within the core volume reached
  - ~70%RH (required ~0.7, 2, and 4 months for 3- 4- and 8-ply facesheets, respectively) 150, one-hour thermal cycles from 30°C to -50°C (required ~6 days)







#### **Objective of Study:**

To determine if long-term exposure to humid air (causing moisture build-up in the core volume due to diffusion) coupled with thermal cycles encountered by transport aircraft is detrimental to the mechanical properties of composite sandwich structures.

#### Technical Approach:

- The critical strain energy release rate associated with sandwich facesheet/core debonding (G<sub>c</sub>) was measured before & after environmental exposure, to evaluate whether environment humidity & freeze-thaw cycles have an effect.
- Gc was measured using the Single Cantilever Beam (SCB) geometry
- SCB specimens with 3-, 4-, and 8-ply woven fabric facesheets and four different honeycomb cores types were tested
- Environmental conditioning consisted of:
  - Constant exposure to 65°C and 90%RH until humidity within the core volume reached
  - ~70%RH (required ~0.7, 2, and 4 months for 3- 4- and 8-ply facesheets, respectively) 150, one-hour thermal cycles from 30°C to -50°C (required ~6 days))

- (Added in 2017): Develop an experimental setup to simulate ground-air-ground (GAG) pressure cycles and study delamination growth in both as-produced and env conditioned panels







## The Single-Cantilever Beam (SCB) Test Geometry\*



Summary of test procedure:

- (a) Sawcut used to produce starter crack
- (b) Crack propagated in the ribbon (L) direction of honeycomb core
- (c) Crack tip location monitored using two optical microscopes
- (d) Initial natural crack created by causing the crosshead to move upward at a rate of 0.5 mm/min, until a ~5 mm crack had formed; the specimen was then unloaded
- (e) The crosshead was then moved upward at a rate of 30 mm/min until the crack has grown by ~10 mm; the specimen was then unloaded at 30 mm/min ("Load Cycle 1")
- (f) Step (f) was repeated once ("Load Cycle 2")
- (g) The critical strain energy release rate G<sub>c</sub> was determined using the "area method", based on loaddisplacement curves measured during Load Cycles 1 and 2
- \* Sketch extracted from: Ratcliffe, J.G., and Reeder, J.R., "Sizing a Single Cantilever Beam Specimen for Characterizing Facesheet-Core Debonding in Sandwich Structure", *Jrnl Composite Materials*, Vol 45 (25), pp 2669-2684, (2011).







## The Single-Cantilever Beam (SCB) Test Geometry













## **Typical Single-Cantilever Beam (SCB) Test Data**



- Typical load-displacement curves measured during a SCB test
- The critical strain energy release rate was calculated using the so-called area method:

$$G_c = \frac{\Delta U}{B\Delta a}$$

where:

 $\Delta U$  = area defined by the load-displacement

envelope

- B = specimen width
- $\Delta a$  = crack extension

## The Single-Cantilever Beam (SCB) Test Specimens

| Component        | Description                                                                                  | Product Designation             |
|------------------|----------------------------------------------------------------------------------------------|---------------------------------|
| Facesheet panels | Carbon/Epoxy plane weave prepreg:                                                            | - Cytec (Solvay) T300/970 3k PW |
|                  | Three-ply: [0/45/0] <sub>T</sub>                                                             |                                 |
|                  | Four ply: [0/90] <sub>s</sub>                                                                |                                 |
|                  | Eight ply: [0/45/90/45] <sub>s</sub>                                                         |                                 |
| Core Materials   | Nomex 48 kg/m <sup>3</sup> honeycomb core,<br>12.7 mm thick (3 lb/ft <sup>3</sup> ; 0.5 in)  | Hexcel HRH-10-1/8-3             |
|                  | Nomex 48 kg/m <sup>3</sup> honeycomb core,<br>25.4 mm thick (3 lb/ft <sup>3</sup> ; 1.0 in)  | Hexcel HRH-10-1/8-3             |
|                  | Nomex 128 kg/m <sup>3</sup> honeycomb core,<br>12.7 mm thick (8 lb/ft <sup>3</sup> ; 0.5 in) | Hexcel HRH-10-1/8-8             |
|                  | Kevlar 48 kg/m <sup>3</sup> honeycomb core,<br>12.7 mm thick (3 lb/ft <sup>3</sup> , 0.5 in) | Hexcel HRH-36-1/8-3             |
| Adhesive         | Thin film adhesive                                                                           | 3M Scotch-Weld AF 163-2k        |



1





## **Producing Sandwich Test Panels**

Facesheets were cured in an autoclave Facesheets and core materials were machined to size and stored for 1 month at 50°C (122°F) at 8% RH in a humidity chamber, to insure components were as "dry" as possible











## **Producing Sandwich Test Panels**

Parent panels were then produced by bonding the facesheets to honeycomb cores using thin film adhesive and a hot press SCB specimens were machined from the "parent" panels











### Raw Data Collected for As-Produced [0/90/0]<sup>T</sup> Specimens (Superimposed data from four individual tests for each type)









#### **Raw Data Collected for As-Produced [0/90]** Specimens (Superimposed data from four individual tests for each type)



ΓΕΓΔΙ

Kevlar 48 kg/m<sup>3</sup> honeycomb core, 12.7 mm thick





### Raw Data Collected for As-Produced [0/45/90/45]s Specimens (Superimposed data from four individual tests for each type)









## Gc Measured for As-Produced Specimens

Average and std deviation, based on 4 replicate tests













#### **Discussion** As-produced specimens

Measured trends:

If facesheet failure is avoided, then  $G_c$  is nearly independent of core and facesheet thickness:

- For 48 kg/m<sup>3</sup> Nomex core: average  $G_c$  (24 specimens) =  $1208 \pm 43.7 \text{ J/m}^2$
- For 128 kg/m<sup>3</sup> Nomex core: average  $G_c$  (12 specimens) = 2021 ± 150 J/m<sup>2</sup>

G<sub>c</sub> increases with an increase in core density:

• Average *G<sub>c</sub>* measured for 128 kg/m<sup>3</sup> Nomex core was 67% higher than that measured for 48 kg/m<sup>3</sup> Nomex core

 $G_c$  is significantly lower for Kevlar vs Nomex core:

For 48 kg/m<sup>3</sup> cores the average  $G_c$  measured for Nomex and Kevlar cores was 1208 J/m<sup>2</sup> and 661 J/m<sup>2</sup>, respectively, a decrease of 45%







Producing "Witness" Test Panels

- Witness panels were used to measure changes in core humidity levels due to diffusion of water molecules through the facesheets
- Ohmic Instr Model HC-610 humidity sensors (now marketed as Honeywell Model HIH-4010-003 sensors), were embedded within the core volume
- Outer aluminum frames were used in insure diffusion was 1-D
- Eight witness panels were produced using the various facesheet-core combinations considered









Exposure to elevated temperature and humidity

- A total of 48 SCB specimens, 8 witness panels\*, and a separate "free standing" HC-610 humidity sensor were placed in a humidity chamber and exposed to 65°C (149 °F) and 90%RH until core humidity levels were about 70%RH
- Humidity levels within the cores of the witness panels and the corresponding SCB specimens was assumed to be identical

\* the humidity sensor in one witness panel failed after about 550 hrs









Measurements during first 1440 hrs of exposure to 65°C and 90% RH









## Discussion

Exposure to elevated humidity

Measured results show that *rate* of core humidity level buildup is decreased with:

- an increase in facesheet thickness, and/or
- an increase in core thickness, and/or
- an increase in core density







Exposure to thermal cycles

After witness panel core humidity reached ~70%RH the corresponding SCB specimens were sealed in metal-coated bags (to maintain internal core humidity), placed within a temperature chamber, and subjected to 150 one-hour temperature cycles from +30°C to -50°C...thermal cycling required 6.25 days.









#### **Raw Data for Conditioned [0/90/0]** T **Specimens** (Superimposed data from four individual tests for each type)









#### Raw Data for Conditioned [0/90]<sub>s</sub> Specimens (Superimposed data from 3 or 4 individual tests for each type)









#### Raw Data for Conditioned [0/45/90/45]s Specimens (Superimposed data from four individual tests for each type)









## Gc Measured for Conditioned Specimens















## Discussion

Environmentally-conditioned specimens

• Confounding trends...for some facesheet/core combinations environmental conditioning led to erratic and inconsistent behaviors, but for others conditioning had little or no effect

• Going forward, will conduct SCB tests at -50°C, using both asproduced and environmentally-conditioned specimens

• Prior to SCB tests will perform NDI of as-produced and conditioned specimens using CT Scan







**Preliminary Results** 



Preliminary Results

## GAG Specimen:













Preliminary Results



Preliminary Results











[0/45/0]T w/1.0 Nomex core



External pressure = 14.7 psi Core pressure = 14.8 psi







[0/45/0]T w/1.0 Nomex core



External pressure = 14.7 psi Core pressure = 14.8 psi



External pressure = 12.4 psi Core pressure = 14.3 psi







[0/45/0]T w/1.0 Nomex core



External pressure = 14.7 psi Core pressure = 14.8 psi



External pressure = 12.4 psi Core pressure = 14.3 psi



External pressure = 9.6 psi Core pressure = 13.4 psi







[0/45/0]T w/1.0 Nomex core



External pressure = 14.7 psi Core pressure = 14.8 psi



External pressure = 12.4 psi Core pressure = 14.3 psi



External pressure = 9.6 psi Core pressure = 13.4 psi



External pressure = 6.7 psi Core pressure = 12.2 psi







[0/45/0]T w/1.0 Nomex core



External pressure = 6.7 psi Core pressure = 12.2 psi





Core pressure = 9.7 psi



W [mm]

2.0165

.88312

.7496

.6162

.48281

.3493

1.21594

1.0825

0.949062

0.815625

0.682187

0.54875

0.415312

0.281875

0.148438

2.15

[0/45/0]T w/1.0 Nomex core



External pressure = 6.7 psi Core pressure = 12.2 psi





External pressure = 0.96 psi Core pressure = 8.2 psi W [mm]

2.0165

.88312

.7496

.6162

.48281

.3493

1.21594

1.0825

0.949062

0.815625

0.682187

0.54875

0.415312

0.281875

0.148438

W [mm]

2.01656

1.88312

1.74969

1.61625

1.48281

1.34938

1.21594

1.0825

0.949062

0.81562

0.682187

0.54875

.415312

0.281875

0.148438

2.15

2.15



## Discussion

• Going forward, will conduct static and fatigue GAG tests at -50°C, using both as-produced and environmentally-conditioned panels







## Benefit to Aviation:

- Will help to clarify mechanism(s) leading to initiation and growth of skin-core disbond in sandwich structures
- Will contribute to efforts to establish standard test protocols and data reduction practices for SCB testing of sandwich specimens







# Thank You!

Questions, Comments, Suggestions?







## **End of Presentation.**

## Thank you.







35