

The Active Flutter Suppression (AFS) Technology Evaluation Project

Eli Livne, Ph.D.

The William E. Boeing Department of Aeronautics and Astronautics University of Washington, Seattle, WA

eli@aa.washington.edu

JAMS Meeting, Seattle, WA, March 2014

The Active Flutter Suppression (AFS) Technology Evaluation Project

David R. Westlund FAA - Advanced Materials and Structures John Bakuckas, Ph. D. FAA - Structures and Materials Section, ANG-E231 Carl J. Niedermeyer FAA - Airframe and Cabin Safety Branch (ANM-115) Ian Y. Won FAA - Airframe/Cabin Safety Branch (ANM-115) FAA Transport Airplane Directorate

JAMS Meeting, Seattle, WA, March 2014

The Aeroelastic (AE) physical feedback loop and its associated stability: static & dynamic

Divergence & Flutter Instabilities

Aero-servo-elasticity (ASE)

Aeroservoelastic Systems Benefits and Opportunities

- Shape dynamic behavior of the flexible vehicle using active control:
 - Flight mechanics of the vehicle as a "rigid body"
 - Gust load alleviation
 - Ride comfort (Vibrations)

- A control system designed for flight mechanics control, gust alleviation, ride comfort, etc., may interact with the dynamic aeroelastic structure to produce instabilities.
- Find ways to decouple the active control system from the dynamics of the aeroelastic system.

Opportunities – AFS as a response to flutter problems

If flutter or other dynamic aeroelastic problems show up late in the design process, when solution by revised stiffness / inertia / aerodynamic means becomes too costly / impractical:

• Use active control, through the action of control effectors driven by actuators and control laws, to solve the problems.

In this case Active Flutter Suppression is used as a fix of flutter problems.

JMS Opportunities – AFS as part of the Integrated design from the START

Allow integrated optimization of the coupled structure / aerodynamic / control system from its early design stages, leading (potentially) to major weight savings and performance improvements.

Ortholrook layers Hy2 Plane of symmetry

<u>Control system design variables</u> (depending on Control system topology and parametrization) <u>Constraints</u> on aeroservoelastic stability, flight stability and control, handling qualities, maneuver loads, gust loads, ride comfort.

"Future of Airplane Aeroelasticity", Journal of Aircraft, Vol. 40, No. 6, 2003, pp. 1066-1092. Livne, E., "Integrated Aeroservoelastic Optimization: Status and Progress",

Livne, E.,

Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 122-145.

Structural design variables:

Toplogy, shape, sizing (skin panel layup and thickness, Spar / rib caps and webs) <u>Constraints:</u> stress, strength, buckling, Fatigue, damage tolerance

Objectives: Weight, cost, performance or some mix of those

10

Technology State of the Art

- Gust alleviation systems are already certified on passenger airplanes as well as ride comfort augmentation and maneuver load control systems.
- Those aeroservoelastic systems operate in harmony with the aircraft flight control system (FCS).
- Active Flutter Suppression has been thoroughly researched since the mid 1960s (when flight control systems began to become powerful and high bandwidth).

Technology State of the Art (continued)

- Many academic / theoretical studies.
- Quite a number of wind tunnel tests using dynamically / aeroelastically scaled models of production or test aircraft with active controls.
- A few AFS flight tests of AFS-configured test vehicles

 A B52 in the early 1970s, an F4F with external stores in the 1970s, NASA DAST UAV in the 1970s-early 1980s, Lockheed / USAF X56 UAV recently.

Past AFS Flight Testing Experiences

NASA DAST (Drones for Aeroelastic & Structural Testing) Program – Late 1970s Early 1980s.

12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter.

US-AFFDL & Germany's MBB F4F with external stores AFS research vehicle Late 1970s

B-52 CCV Research Vehicle Early to mid 1970s

Recent Encounters

www.flightglobal.com 23 Mar 2011

FAA and Boeing agree on 747-8 OAMS special condition

Boeing and the US FAA have come to a final agreement on the regulatory special condition required for the

<u>747-8</u>'s outboard aileron modal suppression (OAMS) system designed to dampen out a structural vibration in the wing.

The X-56A Multi-utility Aeroelastic Demonstration (MAD) is an innovative modular unmanned air vehicle designed to test active flutter suppression and gust load alleviation.

http://www.lockheedmartin.com/us/products/x-56.html

AIAA 80-0770R

J. AIRCRAFT

Active Flutter Suppression on an F-4F Aircraft

O. Sensburg* and H. Hönlinger† Messerschmitt-Bölkow-Blohm, West Germany

and T.E. Noll‡ and L.J. Huttsell‡ Air Force Wright Aeronautical Laboratories, Wright Patterson Air Force Base, Ohio

[%] with FSS 10 without FSS Δ Damping [g] 5 0 100 500 600 700 400 200 300 [KIAS] AIRSPEED Fig. 24 Increase of flutter speed with FSS.

VOL. 12, NO. 6, JUNE 1975

J. AIRCRAFT

Active Flutter Suppression—A Flight Test Demonstration

Kenneth L. Roger* and Garold E. Hodges† The Boeing Company, Wichita, Kansas

and

Larry Felt‡ Wright Patterson Air Force Base, Ohio

Fig. 9 Modified test airplane.

Fig. 1 B-52 CCV control surfaces.

Past Flutter Flight Testing with AFS - Safety

Upon failure of both AFS systems, external store Inertia is rapidly changed to a safe, stable configuration.

Mild flutter, low frequency Analysis of time to destruction if AFS system fails Enough time is available for pilots to correct

CCV B52 Flight Tests With and Without AFS

2 knots below flutter, with and without FMC.

Fig. 19 FMC transient response, 12 knots above flutter.

2

TIME - SECONDS

O.

Я.

The FAA / AMTAS Active Flutter Suppression Project

- Assess the state of the art of the technology and its level of readiness for actual airplane implementation.
- Work with industry, government research agencies, government regulation & certification agencies in the U.S. and abroad, as well as academia to develop a plan of action that would lead, via development of analysis, design, tests, operations, and maintenance process to established FAA policies regarding AFS on civil aircraft.

The FAA / AMTAS Active Flutter Suppression Project

- Year 1: state of the art assessment and the development of an R&D plan.
- Years 2&3: Analysis and design studies followed by tests of representative configurations to study technology readiness, identify key issues, and create a data base of test results for future design & analysis methods validation.
- Conclusion: Revised FAA policies / certification requirements (or not...)

Project Status

- Study of the state of the art via a comprehensive literature survey and past-work technical source data base generation almost completed.
- Preparation of discussion points / guidelines for talks with industry completed.
- Currently, launching an industry / government research agencies consultation phase for gathering views from lead experts in this area as well as more information (unpublished) on existing industry experience.

Benefits to Aviation

 Create a state of the art knowledge / experience base of Active Flutter Suppression (AFS) technology that would prepare the FAA and the industry for developments in AFS and its <u>safe</u> potential implementation for airplane efficiency benefits.

