

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

Development of Environmental Durability Test Methods for Composite Bonded Joints

Dan Adams, Larry DeVries Heather McCartin, and David Ricsi

University of Utah

JAMS 2016 Technical Review March 22-23, 2016

FAA Sponsored Project Information

- Principal Investigators:
 - Dr. Dan Adams Dr. Larry DeVries
- Graduate Student Researchers:
 - Heather McCartin
 - **David Ricsi**
- FAA Technical Monitor:
 - **Curt Davies**
- Collaborators:

Boeing: Kay Blohowiak, Will Grace, Charles Park Air Force Research Laboratory: Jim Mazza

Outline

- Update on earlier work: Environmental durability testing of bonded metallic joints
- Current focus: Environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
- Plans for upcoming research

Our Earlier Research Focus: Improving ASTM D3762 Metal Wedge Test

ASTM D 3762: "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Bonded aluminum cantilever beam loaded by forcing a wedge between adherends
- Wedge is retained in specimen
- Assembly placed into test environment
- Crack growth due to environmental exposure measured following prescribed time period
- Able to asses quality of bond quickly by causing rapid hydration of oxide layers

Progress and Status: Improving ASTM D3762 Metal Wedge Test

- Completed study, proposed improvements
- Communicated results with ASTM Committee D14 (Adhesives) at annual meetings
- Completed revision of ASTM D3762 standard
 - Added detail, corrected errors
 - Added focus on failure mode during environmental crack growth (Cohesion, Mixed Mode, Adhesion)
- Proposed revisions reviewed by Boeing and AFRL collaborators
- Updated revision to be sent out to identified user group
- ASTM balloting of revised standard later in 2016

Progress and Status: Development of D14.80 Composites Task Group

- Meets with ASTM D30 (Composites)
- Balloting remains through D14 (Adhesives)
- Updates/revisions to existing adhesive bonding standards of interest to the Composites community

ASTM D5656 Thick-Adherend Lap Shear Test

- Development of new standardized tests
 Composite Wedge Test
- First meeting: April 2016 (San Antonio)

Outline

- Update on earlier work: Environmental durability testing of bonded metallic joints
- Current focus: Environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
 - Plans for upcoming research

Why Environmental Durability Tests of Composite Bonded Joints?

"There is currently no known mechanism similar to metal-bond hydration for composites"

- Ensure longer-term environmental durability of composite bonds
- Investigate effects of environmental exposure on performance of bonded composite joints
 - Failure mode: cohesion versus adhesion failure
 - Estimate fracture toughness reduction
- Evaluate effectiveness of surface preparation

Development of a Composite Wedge Test: Additional Complexities

- Variable flexural stiffness of composite adherends
- Environmental crack growth dependent on adherend flexural stiffness
 - Flexural stiffness must be within an acceptable range or...
 - Must tailor wedge thickness for composite adherends or...
 - Must use another quantity to assess durability
- Restrictions in fiber orientation adjacent to bonded interface
- Failure in the composite laminate prior to failure in the adhesive or at the bondline

Use of Fracture Toughness, G_c To Assess Environmental Durability

Consider composite adherends as cantilever beams

- Measured values of crack length, a
- Known value of beam deflection, δ

 $\delta = t/2$ (half of wedge thickness)

Tip deflection of a cantilever beam:

 $= T a^{\uparrow} 3 / 3 E f I$

$$\delta = t/2 = P l^{\uparrow}3 / 3 Ef I$$

Use of Fracture Toughness, G_c To Assess Environmental Durability

Consider composite adherends as cantilever beams

- Measured values of crack length, a
- Known value of beam deflection, δ

 $\delta = t/2$ (half of wedge thickness)

Tip deflection of a cantilever beam:

 $= T a \uparrow 3 / 3 E f I$

$$\delta = t/2 = P l^{\uparrow}3 / 3 Ef I$$

T = Ef b h f 3 t / 8 a f 3 a = crack length t = wedge thickness Strain energy due to bending: U = 1/2 T S = adherend thickness Strain energy release rate: $G \downarrow c = dU/da$ b = specimen width T = load to deflect tip of beam $G \downarrow c = 3$ Ef t f 2 h f 3 / 16 a f 4 f 1/(1+0.64 h/ G \downarrow c = fracture toughness

Correction factor for crack tip rotation

Experimental Investigation: Composite Wedge Test Development

- Unidirectional IM7/8552 carbon/epoxy adherends
- AF163-2K film adhesive
- "Ideal Bond": Grit-blast & acetone wipe bond surfaces
- Different adherend thicknesses to produce different E_f
 - 7 ply (~0.05 in.): Minimize crack length
 - 13 ply (~0.09 in.): Match El of aluminum
 - 20 ply (~0.14 in.): Match thickness of aluminum
 - 25 ply (~0.18 in.): Maximize crack growth

122°F (50°C) and 95% humidity environment

Effects of Composite Adherend Thickness: Fracture Toughness Values

- Adherend thickness of ~ 20 ply (0.14") preferred
 - E*I value ~3.6 times that of 1/8" aluminum
 - Greater environmental crack growth

Composite Wedge Test Development: Assessment of Surface Preparation Effects

Composite Wedge Test Development: Comparison With DCB Test (No Adhesive)

- IM7/8552 unidirectional laminates, 20 ply specimens
- Room temperature/ambient testing
- Comparison of G_c values
 - Wedge test: Gc calculated based on crack length
 - DCB: Gc calculated following ASTM D552

Comparison With DCB Test (No Adhesive): Test Results for IM7/8552

- Good agreement with measured Gc values
 - DCB: Gc calculated following ASTM D552
 - Wedge test: Gc calculated based on crack length
- Similar appearance on fracture surfaces

OF UTAH

Composite Wedge Test Development: Current Focus

- Further investigate sensitivity of apparent G_c to variations in flexural modulus
 - Moderate thickness variations of IM7/8552 adherends
 - Use of other composite materials for adherends
- Investigate other composite laminates for adherends
 - Quasi-isotropic, cross-ply
- Further comparisons with other proposed test methods

Outline

- Update on earlier work: Environmental durability testing of bonded metallic joints
- Current focus: Environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
- Plans for upcoming research

Traveling Wedge Test for Environmental Durability Assessment

- Wedge driven continuously through adhesive bondline at desired temperature
- Measurement of driving force
- Requires moisture saturation of bonded composite specimen prior to testing
 - Use of thin adherends
 - "Back-bonding following conditioning
- Can provide an estimate of G_c using crack length measurements
- Limited prior usage/investigation for environmental durability assessment

Traveling Wedge Test Development: Initial Comparison with Static Wedge Test

- 20 ply IM7/8552 adherends, AF163-2K film adhesive, "ideal" bonding condition
- Ambient & 122°F (50°C)/95% humidity moisture conditioning/ testing environment
- G_c values based on crack lengths in general agreement

20

OF UTAH

Traveling Wedge Test - Thin Adherends: Effects of Surface Treatment

- Moisture conditioning of 3 ply composite adherends
- Low-temperature, quick cure "back-bonding" of composite doublers
- Tested at elevated temperature 122°F (50°C)

Traveling Wedge Test Assessment: Current Focus

- Development of "hybrid" traveling wedge test
 - Reduce friction/binding through use of rollers
 - Explore use of thin adherends
 - Force measurements during traveling wedge testing to estimate G_c
 - Periodic environmental durability testing via static wedge configuration
- Comparison of G_c estimates with static wedge, and back-bonded DCB

Outline

- Update on earlier work: Environmental durability testing of bonded metallic joints
- Current focus: Environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
- Plans for upcoming research

Environmental Durability Testing: Boeing Back-Bonded DCB Test

- Bond thin adherends with desired surface preparation and adhesive
- Moisture saturate thin bonded composite specimen
- Bond doubler panels to thin specimens to produce full DCB specimen thickness
- Test at elevated temperature conditions

Van Voast, Blohowiak, Osborne and Belcher, "Rapid Test Methods for Adhesives and Adhesion" (SAMPE 2013)

Back-Bonded DCB Test Results: Surface Treatment Effects

- Three types of peel ply: PTFE, Nylon, and VLP
- Three surface preps: Grit blast, hand sand, no treatment.
- Moisture saturated (3 ply adherends), tested at 122°F (50°C)

Back-Bonded DCB vs. Static Wedge Test: Initial Fracture Toughness Comparisons

- Higher fracture toughness values at ambient conditions
- Good agreement at ambient conditions
- Significant differences at environment using backbonded DCB specimens
- Further investigation underway

26

OF UTAH

Environmental Durability Testing of Composites: Plans for Upcoming Research

- Continue development of composite wedge test
 - Variations in flexural modulus
 - Investigate other composite adherends & adhesives
 - Comparisons with other proposed test methods
- Further development of "hybrid" traveling wedge test for assessing larger bond areas
- Explore related usages of composite wedge test
 - Thermal cycling
 - Fluid sensitivity

BENEFITS TO AVIATION

- Improved environmental durability test method for metal bonds (metal wedge test, ASTM D3762)
- Composite wedge test for assessing the environmental durability of composite bonds
- Evaluation of other candidate test methods for assessing environmental durability of adhesively bonded aircraft structures
- Dissemination of research results through FAA technical reports and conference/journal publications

