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Matrix Compression Damage Model 

•  Motivation and Key Issues  
–  Need to better understand compressive damage 

mechanisms in carbon fiber matrices 
•  Objective 

–  Create a model that can be used to predict the 
material response to damage 

•  Approach 
–  Experimental tests to validate continuum damage 

mechanics model and classify damage behavior 



Project Overview 

•  Out-of-Plane loading 
–  Four point bending experiments and simulations showed good 

agreement (within 10% for max. load) 
–  Out-of-plane shear experiments and simulations also showed 

good agreement (within ~20% for max load, and most strain 
fields) 

•  Sensitivity studies to determine effects of FEA inputs 
–  Largest effects were longitudinal strengths 
–  Larger uncertainty associated with damage propagation values 

•  Results of previous work showed need for better 
understanding of damage propagation behavior 

•  Current study focuses on matrix compression damage 
propagation 
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Today’s Topics 
•  Literature Review 

–  Damage Models 
–  Compression specimens 

•  Specimen Selection 
–  Candidate Specimens 
–  Selection study using FEA 
–  Selected Specimen 

•  Proposed Model 
•  Preliminary Study 

–  Un-notched Specimens 
–  Compact Compression Specimens 
–  Conclusions 

•  Final Testing Plan  
•  Looking Forward 
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Matrix Damage Models Literature 

•  Compression damage in composites is often 
modeled with fracture mechanics methods 

•  Pinho et al. assumed matrix compression can be 
modelled as a single angled mode II crack in the 
90 degree plies 

•  Abaqus model uses a continuum damage 
mechanics model 

•  Net effect of damage modeled by smearing 
properties over entire damage region 

•  Strain energy release rate governs the 
degradation of the stiffness and the overall strain 
to failure for the material 

•  Ritter used energy dissipation methods to 
determine when damage occurred in composites 
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Specimen Literature Review 

•  All studies found focused on fiber compression not matrix compression 
•  Similar specimens can be used since similar loading modes desired 
•  Center Notched Compression (CNC) 

•  Used primarily in early studies 
•  Isolation of desired failure mechanism achieved in some studies, but 

specimens showed a tendency to split off axis 
•  Require anti-buckling guards: face mounted or edge mounted 

•  Compact Compression (CC) 
•  Modified versions of compact tension specimens 
•  Good isolation of desired failure mode until significant damage growth 

•  Four Point Bending (4PB) 
•  Different failure mode: through thickness vs intralaminar failure 
•  Able to isolate the fiber compressive mode sufficiently well 
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Candidate Specimens and Procedures 

•  Based on the literature Center Notched Compression, Compact 
Compression and Four point bending specimens were selected for 
evaluation 

•  The goal of these specimens is to be able to isolate compressive 
damage in a specific region 

•  Allow for tracking of the damage propagation through the specimen 
•  Varied boundary conditions in models to test fixture types 
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Specimen Selection-FEA Results 

•  Specimens using the current 
Abaqus Damage Model 

•  Compared predicted damage 
region sizes to evaluate 
specimens 

•  4PB mostly showed damage at 
load points 

•  CNC had a tendency to split 
perpendicular to the notch 

•  CC showed best isolation of 
compressive damage- tensile 
splitting only occurred after 
significant damage propagation 
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Final Specimen Selection 

•  Based on the results the CC specimens were chosen for the 
preliminary tests 

•  CC specimens showed the best isolation of compressive damage, 
despite some tensile splitting after significant damage propagation 

•  CC specimens require simple pin fixtures and no buckling guards as 
long as the specimen is sufficiently thick 

•  CNC showed fairly good isolation of compressive damage but is 
dependent on complex fixtures and boundary conditions 

•  4PB did not show isolation of the desired damage modes 
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Proposed	Model 

•  Continuum damage mechanics models use the energy dissipated by 
a damage region to degrade the stiffness of that region 

•  Since all damage is irreversible and the model does not explicitly 
model damage mechanisms, continuum damage mechanics can be 
applied relatively generally 

•  Useful computational model for FEA programs 
•  Need accurate energy dissipation and degradation of stiffness 
•  Abaqus model currently continuum damage mechanics based, but 

degrades stiffness linearly to zero stress 
•  May not be accurate for matrix compression (possibility of residual 

stress in material after fully damaged, non-linear stiffness effects) 
•  Once damage behavior in understood: 

–  Refinements to stiffness degradation in computational model as needed 
–  Model can be developed to predict energy dissipated based on damage 

mechanisms 
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Preliminary Testing Overview 

•  Sourced materials to manufacture preliminary carbon fiber 
specimens at Oregon State 

•  Un-notched specimens used to classify the failure mechanisms in 
the damaged region due to compressive loading 

•  CC specimens used to validate specimen design and testing 
concepts 

•  Goal: Classify damage mechanisms and measure a preliminary 
strain energy release rate using simple procedures to proof the 
concepts 

•  Use results to inform final testing procedure design   
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Preliminary Testing-Un-notched Specimens 

•  Several different sizes of unidirectional un-notched specimens 
manufactured with vacuum bagging techniques 

•  Edges machined to create a flat surface to load 
•  Very difficult to suppress buckling despite guards 
•  Compression loading very unstable 
•  Requires tight tolerances to prevent any loading eccentricity 
•  Unable to isolate desired failure with current set up 
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Preliminary Testing-Un-notched Specimens 

•  Global buckling generally caused a large crack towards the middle 
of the specimen 

•  With anti-buckling guards the specimen would still often buckle at a 
lower wave length 

•  Clear from lack of symmetry in failures 
•  Examples of buckling failures: 
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Preliminary Testing-Compact Compression 
Specimens 
•  Specimens made with unidirectional plies with fiber direction parallel 

to the notch 
•  Notch and Pin holes machined after curing 
•  Specimens Loaded using custom clevis fixture 
•  Load-Displacement recorded and tests filmed 
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Preliminary Testing-Compact Compression 
Specimens 
•  CC specimens showed good isolation of compressive damage 

without global buckling 
•  Evident in symmetry of damaged material 
•  Failure mechanisms show evidence of plastic deformation, shear 

cracks, localized delamination, and local buckling 
•  Ultimate failure due to tensile splitting, after a significant amount of 

compressive damage 
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Preliminary Testing-Compact Compression 
Specimens 
•  Damage able to be tracked visually 
•  Damage region size measured using simple 

visual processing 
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Preliminary Testing-Compact Compression 
Specimens 

•  Load displacement curves showed drops in load due to damage 
•  Drops in load correspond to compressive damage propagation from video  
•  Able to be used to measure change in compliance  
•  Change in compliance can be used to calculate strain energy release 

rate: 
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Important Lessons and Conclusions 
•  Special care is required in compression to prevent instabilities 
•  CC specimens allow compressive damage to occur without global 

buckling 
•  Careful design of CC specimen required to delay tensile splitting as 

long as possible 
•  Compressive damage can be seen visually from test footage 
•  Preliminary measurement of strain energy release in range of 

expected 
•  Preliminary testing validates basic concepts of test plan 
•  Abaqus model showed similar deformation of damage as 

experiments  
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Carbon Fiber Fractography 

•  SEM evidence shows primarily matrix damage 
•  In the majority of samples the exposed fibers in the fractured regions 

show matrix still attached  
•  Shows evidence for mainly matrix failure instead of interface (bare 

fibers) or fiber (broken fibers) failures 
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Final Testing Plan 
•  The preliminary testing and Abaqus model were used to 

inform the final geometry of the specimens 
•  Goal is to delay tensile splitting as long as possible with 

geometric features 
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Final Testing Plan 

•  DIC can be used to calculate the strain energy release rate 
•  J-integral can be calculated numerically from the strain field and be 

used to calculate strain energy release rate 
•  Able to achieve better accuracy then load-displacement based 

methods 
•  Displacement fields can be used to track damage based on 

discontinuities in the fields 
•  Use system at OSU that was used in Mode III experiments 
•  Consistent loading rate tests to measure strain energy release rate 
•  Cyclic loading tests to determine the material behavior and stiffness 

reduction due to damage 
•  Varying notch length of specimens compare stress ahead of the 

crack tip to LEFM solutions to undamaged and damaged specimens 
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Looking forward 

•  Benefit to Aviation 
–  Experimental methods for measuring energy 

dissipated due to matrix compression damage 
–  Better understanding of damage mechanisms to 

refine models to increase accuracy 
•  Future needs 

–  Further testing to classify range of damage behavior 
–  Validate proposed model 
–  Refine material model as needed 
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